cellmap_flow.cli.yaml_cli ========================= .. py:module:: cellmap_flow.cli.yaml_cli .. autoapi-nested-parse:: YAML-based CLI for running multiple models. Similar to cli_v2 but uses YAML configuration files for batch processing. This dynamically discovers ModelConfig subclasses just like cli_v2, making it easy to add new model types without modifying this file. Attributes ---------- .. autoapisummary:: cellmap_flow.cli.yaml_cli.logger Functions --------- .. autoapisummary:: cellmap_flow.cli.yaml_cli.run_multiple cellmap_flow.cli.yaml_cli.main Module Contents --------------- .. py:data:: logger .. py:function:: run_multiple(models: List[cellmap_flow.models.models_config.ModelConfig], dataset_path: str, charge_group: str, queue: str, wrap_raw: bool = True) -> None Submit multiple model inference jobs. :param models: List of ModelConfig instances to run :param dataset_path: Base path to the dataset :param charge_group: Billing/chargeback group :param queue: Job queue name .. py:function:: main(config_path: str, log_level: str, list_types: bool, validate_only: bool) Run multiple model inference jobs from a YAML configuration file. The YAML file should have the following structure:  data_path: /path/to/data charge_group: my_group queue: gpu_h100 # optional, defaults to gpu_h100 json_data: /path/to/config.json # optional models: my_model: type: dacapo run_name: my_run iteration: 100 fly_model: type: fly checkpoint: /path/to/checkpoint.ts classes: [mito, er, nucleus] resolution: [4, 4, 4] The model keys (my_model, fly_model) become the model names. Model types are automatically discovered from ModelConfig subclasses. Use --list-types to see all available types. Examples:  cellmap_flow_yaml config.yaml cellmap_flow_yaml config.yaml --log-level DEBUG cellmap_flow_yaml --list-types cellmap_flow_yaml config.yaml --validate-only