cellmap_flow.norm.input_normalize ================================= .. py:module:: cellmap_flow.norm.input_normalize Attributes ---------- .. autoapisummary:: cellmap_flow.norm.input_normalize.logger Classes ------- .. autoapisummary:: cellmap_flow.norm.input_normalize.SerializableInterface cellmap_flow.norm.input_normalize.InputNormalizer cellmap_flow.norm.input_normalize.Dilate cellmap_flow.norm.input_normalize.EuclideanDistance cellmap_flow.norm.input_normalize.MinMaxNormalizer cellmap_flow.norm.input_normalize.LambdaNormalizer cellmap_flow.norm.input_normalize.ZScoreNormalizer Functions --------- .. autoapisummary:: cellmap_flow.norm.input_normalize.get_input_normalizers cellmap_flow.norm.input_normalize.deserialize_list cellmap_flow.norm.input_normalize.get_normalizations Module Contents --------------- .. py:data:: logger .. py:class:: SerializableInterface .. py:method:: name() :classmethod: .. py:method:: process(data, **kwargs) -> numpy.ndarray .. py:method:: to_dict() .. py:property:: dtype .. py:class:: InputNormalizer .. py:class:: Dilate(size=1) .. py:attribute:: size :value: 1 .. py:class:: EuclideanDistance(anisotropy=50, black_border=True, parallel=5, type='edt', activation='tanh') .. py:attribute:: anisotropy .. py:attribute:: black_border :value: True .. py:attribute:: parallel :value: 5 .. py:attribute:: activation .. py:property:: dtype .. py:class:: MinMaxNormalizer(min_value=0.0, max_value=255.0, invert=False) .. py:attribute:: min_value .. py:attribute:: max_value .. py:property:: dtype .. py:class:: LambdaNormalizer(expression: str) .. py:attribute:: expression .. py:property:: dtype .. py:class:: ZScoreNormalizer(mean=0.0, std=1.0) .. py:attribute:: mean .. py:attribute:: std .. py:property:: dtype .. py:method:: normalize(data: numpy.ndarray) -> numpy.ndarray .. py:function:: get_input_normalizers() -> list[dict] .. py:function:: deserialize_list(elms: dict, T: type) -> list .. py:function:: get_normalizations(elms: dict) -> list[InputNormalizer]