import io
from typing import Optional, Sequence
import matplotlib.pyplot as plt
import numpy as np
import torch
[docs]
def get_image_grid(
input_data: torch.Tensor,
target_data: torch.Tensor,
outputs: torch.Tensor,
classes: Sequence[str],
batch_size: Optional[int] = None,
fig_size: int = 3,
clim: Optional[Sequence] = None,
cmap: Optional[str] = None,
) -> plt.Figure: # type: ignore
"""
Create a grid of images for input, target, and output data.
Args:
input_data (torch.Tensor): Input data.
target_data (torch.Tensor): Target data.
outputs (torch.Tensor): Model outputs.
classes (list): List of class labels.
batch_size (int, optional): Number of images to display. Defaults to the length of the first axis of 'input_data'.
fig_size (int, optional): Size of the figure. Defaults to 3.
clim (tuple, optional): Color limits for the images. Defaults to be scaled by the image's intensity.
cmap (str, optional): Colormap for the images. Defaults to None.
Returns:
fig (matplotlib.figure.Figure): Figure object.
"""
if batch_size is None:
batch_size = input_data.shape[0]
num_images = len(classes) * 2 + 2
fig, ax = plt.subplots(
batch_size, num_images, figsize=(fig_size * num_images, fig_size * batch_size)
)
if len(ax.shape) == 1:
ax = ax[None, :]
for b in range(batch_size):
for c, label in enumerate(classes):
output = outputs[b][c].squeeze().cpu().detach().numpy()
target = target_data[b][c].squeeze().cpu().detach().numpy()
if len(output.shape) == 3:
output_mid = output.shape[0] // 2
output = output[output_mid]
target = target[output_mid]
ax[b, c * 2 + 2].imshow(target, clim=clim, cmap=cmap)
ax[b, c * 2 + 2].axis("off")
ax[b, c * 2 + 2].set_title(f"GT {label}")
ax[b, c * 2 + 3].imshow(output, clim=clim, cmap=cmap)
ax[b, c * 2 + 3].axis("off")
ax[b, c * 2 + 3].set_title(f"Pred. {label}")
input_img = input_data[b][0].squeeze().cpu().detach().numpy()
if len(input_img.shape) == 3:
input_mid = input_img.shape[0] // 2
input_img = input_img[input_mid]
x_pad, y_pad = (input_img.shape[1] - output.shape[1]) // 2, (
input_img.shape[0] - output.shape[0]
) // 2
if x_pad <= 0:
x_slice = slice(0, input_img.shape[1])
else:
x_slice = slice(x_pad, -x_pad)
if y_pad <= 0:
y_slice = slice(0, input_img.shape[0])
else:
y_slice = slice(y_pad, -y_pad)
ax[b, 1].imshow(input_img[x_slice, y_slice], cmap="gray", clim=clim)
ax[b, 1].axis("off")
ax[b, 1].set_title("Raw")
ax[b, 0].imshow(input_img, cmap="gray", clim=clim)
ax[b, 0].axis("off")
ax[b, 0].set_title("Full FOV")
w, h = output.shape[1], output.shape[0]
rect = plt.Rectangle(
(x_pad, y_pad), w, h, edgecolor="r", facecolor="none"
) # type: ignore
ax[b, 0].add_patch(rect)
fig.tight_layout()
return fig
[docs]
def fig_to_image(fig: plt.Figure) -> np.ndarray: # type: ignore
with io.BytesIO() as buff:
fig.savefig(buff, format="raw", dpi=fig.dpi)
buff.seek(0)
data = np.frombuffer(buff.getvalue(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
plt.close("all")
return im
[docs]
def get_image_grid_numpy(
input_data: torch.Tensor,
target_data: torch.Tensor,
outputs: torch.Tensor,
classes: Sequence[str],
batch_size: Optional[int] = None,
fig_size: int = 3,
clim: Optional[Sequence] = None,
cmap: Optional[str] = None,
) -> np.ndarray: # type: ignore
"""
Create a grid of images for input, target, and output data using matplotlib and convert it to a numpy array.
Args:
input_data (torch.Tensor): Input data.
target_data (torch.Tensor): Target data.
outputs (torch.Tensor): Model outputs.
classes (list): List of class labels.
batch_size (int, optional): Number of images to display. Defaults to the length of the first axis of 'input_data'.
fig_size (int, optional): Size of the figure. Defaults to 3.
clim (tuple, optional): Color limits for the images. Defaults to be scaled by the image's intensity.
cmap (str, optional): Colormap for the images. Defaults to None.
Returns:
fig (numpy.ndarray): Image data.
"""
fig = get_image_grid(
input_data=input_data,
target_data=target_data,
outputs=outputs,
classes=classes,
batch_size=batch_size,
fig_size=fig_size,
clim=clim,
cmap=cmap,
)
return fig_to_image(fig)
[docs]
def get_fig_dict(
input_data: torch.Tensor,
target_data: torch.Tensor,
outputs: torch.Tensor,
classes: Sequence[str],
batch_size: Optional[int] = None,
fig_size: int = 3,
clim: Optional[Sequence] = None,
colorbar: bool = True,
) -> dict:
"""
Create a dictionary of figures for input, target, and output data.
Args:
input_data (torch.Tensor): Input data.
target_data (torch.Tensor): Target data.
outputs (torch.Tensor): Model outputs.
classes (list): List of class labels.
batch_size (int, optional): Number of images to display. Defaults to the length of the first axis of 'input_data'.
fig_size (int, optional): Size of the figure. Defaults to 3.
clim (tuple, optional): Color limits for the images. Defaults to be scaled by the image's intensity.
colorbar (bool, optional): Whether to display a colorbar for the model outputs. Defaults to True.
Returns:
image_dict (dict): Dictionary of figure objects.
"""
if batch_size is None:
batch_size = input_data.shape[0]
image_dict = {}
for c, label in enumerate(classes):
if colorbar:
grid_spec_kw = {"width_ratios": [1, 1, 1, 1, 0.2]}
else:
grid_spec_kw = {}
fig, ax = plt.subplots(
batch_size,
4 + colorbar,
figsize=(fig_size * (4 + colorbar * 0.2), fig_size * batch_size),
gridspec_kw=grid_spec_kw,
)
if len(ax.shape) == 1:
ax = ax[None, :]
for b in range(batch_size):
output = outputs[b][c].squeeze().cpu().detach().numpy()
target = target_data[b][c].squeeze().cpu().detach().numpy()
if len(output.shape) == 3:
output_mid = output.shape[0] // 2
output = output[output_mid]
target = target[output_mid]
ax[b, 2].imshow(target, clim=clim)
ax[b, 2].axis("off")
ax[b, 2].set_title(f"GT {label}")
im = ax[b, 3].imshow(output, clim=clim)
ax[b, 3].axis("off")
ax[b, 3].set_title(f"Pred. {label}")
if colorbar:
orientation = "vertical"
location = "right"
cbar = fig.colorbar(
im, orientation=orientation, location=location, cax=ax[b, 4]
)
cbar.ax.set_aspect(40)
ax[b, 4].set_title("Intensity")
input_img = input_data[b][0].squeeze().cpu().detach().numpy()
if len(input_img.shape) == 3:
input_mid = input_img.shape[0] // 2
input_img = input_img[input_mid]
x_pad, y_pad = (input_img.shape[1] - output.shape[1]) // 2, (
input_img.shape[0] - output.shape[0]
) // 2
if x_pad <= 0:
x_slice = slice(0, input_img.shape[1])
else:
x_slice = slice(x_pad, -x_pad)
if y_pad <= 0:
y_slice = slice(0, input_img.shape[0])
else:
y_slice = slice(y_pad, -y_pad)
ax[b, 1].imshow(input_img[x_slice, y_slice], cmap="gray", clim=clim)
ax[b, 1].axis("off")
ax[b, 1].set_title("Raw")
ax[b, 0].imshow(input_img, cmap="gray", clim=clim)
ax[b, 0].axis("off")
ax[b, 0].set_title("Full FOV")
w, h = output.shape[1], output.shape[0]
rect = plt.Rectangle( # type: ignore
(x_pad, y_pad), w, h, edgecolor="r", facecolor="none"
)
ax[b, 0].add_patch(rect)
fig.tight_layout()
image_dict[label] = fig
return image_dict
[docs]
def get_image_dict(
input_data: torch.Tensor,
target_data: torch.Tensor,
outputs: torch.Tensor,
classes: Sequence[str],
batch_size: Optional[int] = None,
fig_size: int = 3,
clim: Optional[Sequence] = None,
colorbar: bool = True,
) -> dict:
"""
Create a dictionary of images for input, target, and output data.
Args:
input_data (torch.Tensor): Input data.
target_data (torch.Tensor): Target data.
outputs (torch.Tensor): Model outputs.
classes (list): List of class labels.
batch_size (int, optional): Number of images to display. Defaults to the length of the first axis of 'input_data'.
fig_size (int, optional): Size of the figure. Defaults to 3.
clim (tuple, optional): Color limits for the images. Defaults to be scaled by the image's intensity.
colorbar (bool, optional): Whether to display a colorbar for the model outputs. Defaults to True.
Returns:
image_dict (dict): Dictionary of image data.
"""
# TODO: Get list of figs for the batches, instead of one fig per class
fig_dict = get_fig_dict(
input_data=input_data,
target_data=target_data,
outputs=outputs,
classes=classes,
batch_size=batch_size,
fig_size=fig_size,
clim=clim,
colorbar=colorbar,
)
return {k: fig_to_image(v) for k, v in fig_dict.items()}