cellmap_data.utils.figs#
Functions
|
|
|
Create a dictionary of figures for input, target, and output data. |
|
Create a dictionary of images for input, target, and output data. |
|
Create a grid of images for input, target, and output data. |
|
Create a grid of images for input, target, and output data using matplotlib and convert it to a numpy array. |
- cellmap_data.utils.figs.get_image_grid(input_data: Tensor, target_data: Tensor, outputs: Tensor, classes: Sequence[str], batch_size: int | None = None, fig_size: int = 3, clim: Sequence | None = None, cmap: str | None = None) Figure [source]#
Create a grid of images for input, target, and output data. :param input_data: Input data. :type input_data: torch.Tensor :param target_data: Target data. :type target_data: torch.Tensor :param outputs: Model outputs. :type outputs: torch.Tensor :param classes: List of class labels. :type classes: list :param batch_size: Number of images to display. Defaults to the length of the first axis of ‘input_data’. :type batch_size: int, optional :param fig_size: Size of the figure. Defaults to 3. :type fig_size: int, optional :param clim: Color limits for the images. Defaults to be scaled by the image’s intensity. :type clim: tuple, optional :param cmap: Colormap for the images. Defaults to None. :type cmap: str, optional
- Returns:
Figure object.
- Return type:
fig (matplotlib.figure.Figure)
- Parameters:
input_data (Tensor)
target_data (Tensor)
outputs (Tensor)
classes (Sequence[str])
batch_size (int | None)
fig_size (int)
clim (Sequence | None)
cmap (str | None)
- cellmap_data.utils.figs.fig_to_image(fig: Figure) ndarray [source]#
- Parameters:
fig (Figure)
- Return type:
ndarray
- cellmap_data.utils.figs.get_image_grid_numpy(input_data: Tensor, target_data: Tensor, outputs: Tensor, classes: Sequence[str], batch_size: int | None = None, fig_size: int = 3, clim: Sequence | None = None, cmap: str | None = None) ndarray [source]#
Create a grid of images for input, target, and output data using matplotlib and convert it to a numpy array. :param input_data: Input data. :type input_data: torch.Tensor :param target_data: Target data. :type target_data: torch.Tensor :param outputs: Model outputs. :type outputs: torch.Tensor :param classes: List of class labels. :type classes: list :param batch_size: Number of images to display. Defaults to the length of the first axis of ‘input_data’. :type batch_size: int, optional :param fig_size: Size of the figure. Defaults to 3. :type fig_size: int, optional :param clim: Color limits for the images. Defaults to be scaled by the image’s intensity. :type clim: tuple, optional :param cmap: Colormap for the images. Defaults to None. :type cmap: str, optional
- Returns:
Image data.
- Return type:
fig (numpy.ndarray)
- Parameters:
input_data (Tensor)
target_data (Tensor)
outputs (Tensor)
classes (Sequence[str])
batch_size (int | None)
fig_size (int)
clim (Sequence | None)
cmap (str | None)
- cellmap_data.utils.figs.get_fig_dict(input_data: Tensor, target_data: Tensor, outputs: Tensor, classes: Sequence[str], batch_size: int | None = None, fig_size: int = 3, clim: Sequence | None = None, colorbar: bool = True) dict [source]#
Create a dictionary of figures for input, target, and output data. :param input_data: Input data. :type input_data: torch.Tensor :param target_data: Target data. :type target_data: torch.Tensor :param outputs: Model outputs. :type outputs: torch.Tensor :param classes: List of class labels. :type classes: list :param batch_size: Number of images to display. Defaults to the length of the first axis of ‘input_data’. :type batch_size: int, optional :param fig_size: Size of the figure. Defaults to 3. :type fig_size: int, optional :param clim: Color limits for the images. Defaults to be scaled by the image’s intensity. :type clim: tuple, optional :param colorbar: Whether to display a colorbar for the model outputs. Defaults to True. :type colorbar: bool, optional
- Returns:
Dictionary of figure objects.
- Return type:
image_dict (dict)
- Parameters:
input_data (Tensor)
target_data (Tensor)
outputs (Tensor)
classes (Sequence[str])
batch_size (int | None)
fig_size (int)
clim (Sequence | None)
colorbar (bool)
- cellmap_data.utils.figs.get_image_dict(input_data: Tensor, target_data: Tensor, outputs: Tensor, classes: Sequence[str], batch_size: int | None = None, fig_size: int = 3, clim: Sequence | None = None, colorbar: bool = True) dict [source]#
Create a dictionary of images for input, target, and output data. :param input_data: Input data. :type input_data: torch.Tensor :param target_data: Target data. :type target_data: torch.Tensor :param outputs: Model outputs. :type outputs: torch.Tensor :param classes: List of class labels. :type classes: list :param batch_size: Number of images to display. Defaults to the length of the first axis of ‘input_data’. :type batch_size: int, optional :param fig_size: Size of the figure. Defaults to 3. :type fig_size: int, optional :param clim: Color limits for the images. Defaults to be scaled by the image’s intensity. :type clim: tuple, optional :param colorbar: Whether to display a colorbar for the model outputs. Defaults to True. :type colorbar: bool, optional
- Returns:
Dictionary of image data.
- Return type:
image_dict (dict)
- Parameters:
input_data (Tensor)
target_data (Tensor)
outputs (Tensor)
classes (Sequence[str])
batch_size (int | None)
fig_size (int)
clim (Sequence | None)
colorbar (bool)