dacapo.blockwise.watershed_function
Functions
|
Segment the input array using the multicut watershed algorithm. |
Module Contents
- dacapo.blockwise.watershed_function.segment_function(input_array, block, offsets, bias)
Segment the input array using the multicut watershed algorithm.
- Parameters:
input_array (np.ndarray) – The input array.
block (daisy.Block) – The block to be processed.
offsets (List[Tuple[int]]) – The offsets.
bias (float) – The bias.
- Returns:
The segmented array.
- Return type:
np.ndarray
Examples
>>> input_array = np.random.rand(128, 128, 128) >>> total_roi = daisy.Roi((0, 0, 0), (128, 128, 128)) >>> read_roi = daisy.Roi((0, 0, 0), (64, 64, 64)) >>> write_roi = daisy.Roi((0, 0, 0), (32, 32, 32)) >>> block_id = 0 >>> task_id = "task_id" >>> block = daisy.Block(total_roi, read_roi, write_roi, block_id, task_id) >>> offsets = [(0, 1, 0), (1, 0, 0), (0, 0, 1)] >>> bias = 0.1 >>> segmentation = segment_function(input_array, block, offsets, bias)
Note
DGA: had to add in flatten and reshape since remap (in particular indices) didn’t seem to work with ndarrays for the input