cellmap_flow.models.models_config

Attributes

logger

Classes

ModelConfig

ScriptModelConfig

DaCapoModelConfig

FlyModelConfig

BioModelConfig

CellMapModelConfig

Configuration class for a CellmapModel.

Functions

concat_along_c(arrs, axes_list[, channel_axis_name])

Concatenate arrays along the channel axis, adding channel dim if missing.

reorder_axes(→ tuple[numpy.ndarray, list[str]])

Reorder/remove axes to match desired_order, removing size-1 unwanted axes.

process_chunk_bioimage(self, idi, input_roi)

format_output_bioimage(self, output_sample[, ...])

Module Contents

cellmap_flow.models.models_config.logger
class cellmap_flow.models.models_config.ModelConfig
property config
property output_dtype

Returns the output dtype of the model. Defaults to np.float32.

abstractmethod to_dict()

Export model configuration as a dict that can be used with build_model_from_entry.

Returns:

Dictionary containing model type and all init parameters.

class cellmap_flow.models.models_config.ScriptModelConfig(script_path, name=None, scale=None)
script_path
name = None
scale = None
property command
to_dict()

Export configuration for use with build_model_from_entry.

class cellmap_flow.models.models_config.DaCapoModelConfig(run_name: str, iteration: int, name=None, scale=None)
run_name
iteration
name = None
scale = None
property command
to_dict()

Export configuration for use with build_model_from_entry.

class cellmap_flow.models.models_config.FlyModelConfig(checkpoint_path: str, channels: list[str], input_voxel_size: tuple, output_voxel_size: tuple, name: str = None, input_size=None, output_size=None, scale=None)
name = None
checkpoint_path
channels
input_voxel_size
output_voxel_size
scale = None
input_size = None
output_size = None
property command
load_eval_model(num_channels, checkpoint_path)

Load evaluation model from checkpoint (TorchScript or PyTorch).

property model
to_dict()

Export configuration for use with build_model_from_entry.

class cellmap_flow.models.models_config.BioModelConfig(model_name: str, voxel_size, edge_length_to_process=None, name=None, scale=None)
model_name
voxel_size
name = None
scale = None
voxels_to_process = None
property command
load_input_information(model)
load_output_information(model)
get_axes_and_dims(sample)
get_spatial_dims(axes, dims)
get_input_slicer(input_axes)
to_dict()

Export configuration for use with build_model_from_entry.

cellmap_flow.models.models_config.concat_along_c(arrs, axes_list, channel_axis_name='c')

Concatenate arrays along the channel axis, adding channel dim if missing.

cellmap_flow.models.models_config.reorder_axes(arr: numpy.ndarray, axes: list[str], desired_order: list[str] = ['z', 'y', 'x', 'c']) tuple[numpy.ndarray, list[str]]

Reorder/remove axes to match desired_order, removing size-1 unwanted axes.

cellmap_flow.models.models_config.process_chunk_bioimage(self, idi: cellmap_flow.image_data_interface.ImageDataInterface, input_roi: funlib.geometry.Roi)
cellmap_flow.models.models_config.format_output_bioimage(self, output_sample, output_names=None, output_axes=None)
class cellmap_flow.models.models_config.CellMapModelConfig(folder_path, name, scale=None)

Configuration class for a CellmapModel.

cellmap_model
name
scale = None
property command: str
to_dict()

Export configuration for use with build_model_from_entry.